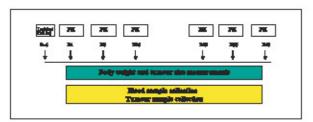
ANTITUMOUR, PHARMACOKINETICS AND DISTRIBUTION STUDIES OF DIFLOMOTECAN (BN80915) ADMINISTERED INTRAVENOUSLY TO NUDE RATS XENOGRAFTED WITH HUMAN NSC NCI-H460 LUNG TUMOUR CELLS

Celma C.1, Peraire C.1, Obach R.1, Bichat F.2, Guilbaud N.2, Genne P.2, Principe P.3, Ipsen Pharma, Barcelona, Spain; Oncodesign, Dijon, France; Beaufour Ipsen, Paris, France.

EXPERIMENTAL METHODOLOGY


- Test substance: Diflomotecan (BN80915) prepared in 2% DMA, 2% Tween 20 and 96% 24mM KH2PO4 pH 5.0
- Tumour cell line: Human NCI-H460 non small cell lung cancer
- Animals: Rowett Nude rats (Harlan SD Inc., Indianapolis)
- Drug administration: 10 min-intravenous (IV) in fusion of diflomotecan to Nude rats via a catheter coupled to a pump-syringe.

PHARMACOKINETIC AND BIODISTRIBUTION OF DIFLOMOTECAN IN TUMOUR BEARING NUDE RATS AFTER A SINGLE IV INFUSION

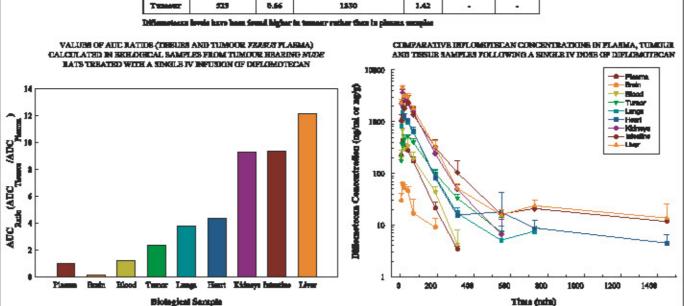
- Subcutaneous inoculation of 10° NCI-H460 cells in 30 healthy Nucle rats and randomisation of rats when the mean (± SD) tumour volume reached $4591 \pm 1027 \,\mathrm{mm}^3$
- Anesthesia of rats with isoflurane
- 10 min single IV in fusion of diflomotecan with an injection volume adjusted to the mean rat body weight (120 µl/min),
- Rat sacrifice by total blood sampling collection via the abdominal acrts at 5, 11, 20, 40, 70, 190, 310, 550, 730 and 1450 min after initiation of infusion (3 rats/sampling time).
- Collection of whole blood, plasma, tumour, liver, kidneys, lungs, heart, brain and intestine samples,
- Determination of diffemeteean concentration in plasma, tumour and tissues by HPLC/MS-MS validated methods using 13C-BN80915 as
- PK, parameters were determined as area under the curve (AUC), plasma clearance (CL), terminal disposition half-life (tuz) and volume of distribution (Vd.,) by non-compartmental analyses.

PHARMACOKINETIC, TOXICOLOGICAL AND ANTITUMOUR PROFILES OF DIFLOMOTECAN AFTER REPEATED IV ADMINISTRATIONS IN TUMOUR BEARING NUDE RATS

- Subcutaneous inoculation of 8x10° human NCI-H460 NSCL Coells in 184 healthy Nude rats
- Rat randomisation when the mean (\pm SD) tumour volume reached 497 \pm 137 mm³,
- Treatment of rats done under anesthesia with ketamine / xylazine
- Repeated 10 min TV difformotecan in fusions at D1, D8, D15, D29, D36 and D43.
- Treatment schedule:

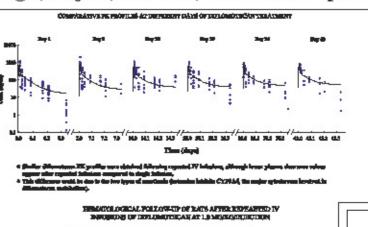
Pharmacokinetic analysis

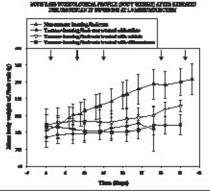
- Diflomotecan plasma pharmacokinetics at D1, D8, D15, D29, D36 and D43
- Pharmacokinetic analysis using a population approach (Nonmem)
- Tumour/plasma concentration ratio under steady state conditions
- -Diflomotecan IV bolus injection at 0.5 mg/kg followed by a continuous IV infusion at 0.65 mg/kg over a 90 min period,
- -Rat sacrifice, blood and tumour samples collection at the end of infusion (90 min).

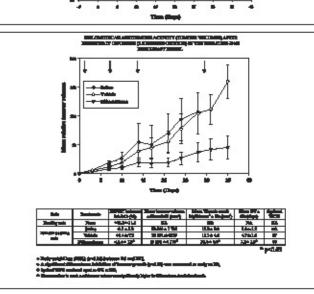

Toxicological and antitumour profiles

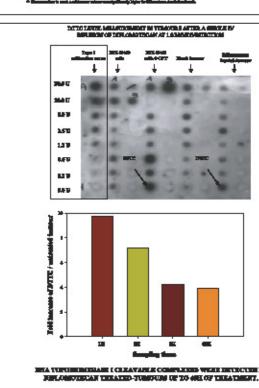
- Monitoring of rat body weight and survival (Workman P. et al. 1998).
- Every three days between D0 and D43
- Rat hematological follow-up
- Three times a week: white blood cells (WBC)/red blood cells (RBC)/platelets (PLT)
- Monitoring of tumour volumes
- Every three days between D0-D43
- Monitoring of DNA Topoisomerase I cleavable complexes (DTCC) in tumour (Topogen kit)

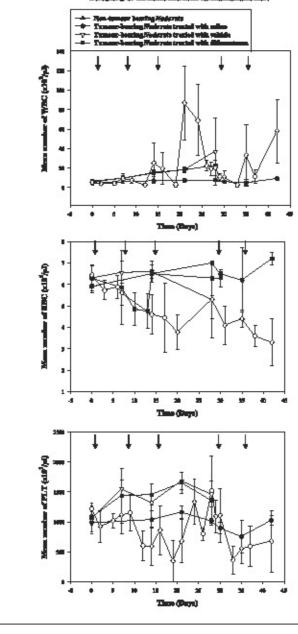
- Homocamptothecins (HCPTs) are novel anticancer drugs issued from research at Beaufour Ipsen, HCPTs inhibit topoisomerase I (Topo I): in contrast with camptothecins they possess a 7-membered-beta-hydroxylactone ring that displays reduced electrophilicity leading to a considerable stabilization of the active, closed lactone form of the drug. As a consequence, the ring opening of HCPTs is also irreversible (Lavergne et al., 1997; Lesueur-Ginot et al., 1999),
- Diflomotecan (BN80915) is a diffuorinated E-ring-HCPT derivative which has shown a specific Topo I inhibition coupled to a marked antitumor activity in various experimental human tumour models xenografted in Nude mice,
- Substantial safety and pharmacolcinetic information has been gathered from phase I trials with diffomotecan administered intravenously (IV) and orally:
- Diflomotecan induces predictable and manageable hematological toxicity
- The development of diffemetecan as an oral Topo I inhibitor is supported by its superior oral bicavailability value coupled to a favourable safety profile after oral administration
- The objective of this study was to explore the PK/PD relationship in a model of Nude rat treated IV with diffomotecan


PHARMACOKINETIC AND BIODISTRIBUTION OF DIFLOMOTECAN IN TUMOR BEARING NUDE RATS AFTER A SINGLE IV INFUSION


	Congr	Trage	ADC	Title	CT.	Vd.
	(ngital or ngig)	(A)	(ng EMBOPISALL (or g) x h)	00	(LTAT - T.)	(Lagr)
Plane	443	0,1#	548	0.42	1,02	2,16
Tenner	533	8.66	1830	1.42	2.5	




Conclusion


- The NCI-H460 tumour bearing Nude rat model was used to determine simulta neously the PK parameters, tissue distribution and antitumour activity of diflomotecan, after single and repeated IV infusions,
- After a single IV infusion, difference concentrations in tumour were higher than in plasma (AUC tumour/plasma ratio at 2.4), Similar diffomotecan PK profiles were obtained following repeated IV infusions, although lower plasma clearance values appear after repeated dosing.
- Under steady state conditions, the tumour/plasma concentrations ratios were 1.6 0.7
- No major toxicity of diflomotecan was observed in human NSC Lung NCI-H460 cancer model in Nude rats after repeated IV infusions,
- A significant diffomotecan antitumour activity was induced in the NSCL NCI-H460 tumour xenografted in Nude rats,
- The antitumour activity of diffomotecan was reflected in significant tumour growth inhibition and a parallel increase of DNA topoisomerase I cleavable complexes,
- The Nude rat model used in this study appears suitable to relate the diflomotecan exposure (AUC) to the induced hematological toxicity and anti-tumour activity
- The analysis of the PK/PD relationship is of value in predicting the toxicity and the efficacy for a given dose regimen, key parameters for the clinical development of a new anti-cancer agent

