

# OOM Unlocking the Potential of OPM-383: A Novel LRRK2 Inhibitor in Cancer Therapy

### Introduction

Leucine-rich repeat kinase 2 (LRRK2) plays a pivotal role in regulating various cellular processes, such as cell proliferation, survival, and inflammation. LRRK2 exhibits dual functionality as a serine-threonine kinase and as a GTPase. It is involved in the modulation of multiple signaling pathways, including WNT, MAPK, NF-kB and mTOR. Germline mutations in LRRK2 are associated with an increased risk of cancer, particularly hormone-related and colorectal cancers. LRRK2 also promotes tumor cell growth and survival in papillary renal and thyroid carcinomas, DLBCL and cholangiocarcinoma cells.

OPM has designed and developed a novel oral LRRK2 inhibitor, OPM-383, using its proprietary Nanocyclix<sup>®</sup> technology. In this study, we have evaluated the pharmacokinetic properties, efficacy and tolerability of OPM-383 in a colon carcinoma model and in a panel of patient-derived organoids



Multiple signalling pathways have been associated with LRRK2 function in physiology and/or disease. Adapted from Wallings R, et al. FEBS J. 2015. Created with BioRender.com

# Materials & Methods

Cellular LRRK2 kinase activity was measured using LanthaScreen technology from Invitrogen. SH-SY5Y neuroblastoma cells are transfected with hG2019S or hWt LRRK2. LRRK2 pS935/total LRRK2 ratios were measured in mouse fibroblast 3T3 cell line to evaluate LRRK2 kinase inhibition. Cellular IC50 values (nM) are reported for OPM-383. A radiometric protein kinase assay (PanQinase<sup>®</sup> Activity Assay) was used for measuring the kinase activity of a selected protein kinases panel. OPM-383 was dissolved in the appropriate matrix with 1% DMSO. The seven main cytochrome P450 isoforms (CYP1A, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) were investigated in the Cytochrome P450 Inhibition assay. OPM-383 was dissolved in 1% tween 80 and 1% HPMC in water and administered by oral route. Rodents were sacrified at different times after administration and blood and tissues were collected. OPM-383 was quantified using LC/MS-MS method. OPM-383 (5 µM) protein binding in brain and plasma was analyzed after 4h of incubation using UPLVC/MS-MS. In vitro metabolism, permeability and protein binding were evaluated at Cyprotex, UK. hERG studies were conducted at Cerep; France.

OPM-383 was dissolved in 1% tween 80, and 1% HPMC in water and administered by oral route into CD1 at 50 mg/kg. Ninety minutes after administration, mice were sacrified and blood, brain and kidney were rapidly dissected and snap-frozen in liquid nitrogen. For immunoblot procedures, antibodies against pS935 and total LRRK2 were used. Western blot detection and quantification were used and LRRK2 pS935/total LRRK2 ratios were calculated to compare LRRK2 kinase inhibitor-dosed groups respect to vehicle group. MC-38 cells were inoculated into C57BL/6 mice. When tumor masses reached 75 mm<sup>3</sup>, mice were randomized to receive OPM-383 (50 and 100 mg/kg, orally, bidaily), anti-PD1 antibody (10 mg/kg, ip, twice weekly), or their combination. Treatments with OPM-383 were administered by oral gavage (PO) via a gastric tube. The administration volume was 10 mL/kg adjusted to the most recent individual body weight. Anti-PD-1 treatment was injected into the peritoneal cavity (IP). Animals were treated for 35 days.

OPM-383 was evaluated in patient-derived organoids using the SEngine-Paris® platform. The cells were treated on the first day using acoustic liquid-handling robots, with different concentrations ranging from 0.32 to 10 μM. On the sixth day, cell viability in each well is determined as a percentage relative to vehicle-treated wells. To assess drug sensitivities, the AUC data from drug response curves were subjected to hierarchical clustering. Thus, SEngine determined a threshold value (SPM) to define the molecule's activity in organoids. If SPM > 9, organoids are considered sensitive to the drug, while SPM < 9 indicates resistance.

<u>Maria Eugenia Riveiro<sup>1</sup>, Petra Blom<sup>1</sup>, Kenji Shoji<sup>1</sup>, Jan Hoflack<sup>1</sup></u>

Oncodesign Precision Medicine S.A., Dijon, France

### **OPM-383** possess an ideal balance of LRRK2 cellular potency, narrow kinase selectivity, metabolic stability, and brain penetration properties

|         | Biochemical<br>Assay<br>IC50 (nM) | Cellular<br>Lanthascreen<br>IC50 (nM) |                  | <b>pLRRK2 in vivo</b><br>CD1 mice, 50 mpk PO,<br>% inh at 90 min |        |      | Tissue<br>concentrations |                   | S50<br>at 150 nM | hERG      |
|---------|-----------------------------------|---------------------------------------|------------------|------------------------------------------------------------------|--------|------|--------------------------|-------------------|------------------|-----------|
|         | LRRK2 WT                          | LRRK2-<br>WT                          | LRRK2-<br>G2019S | Brain                                                            | Kidney | РВМС | Brain<br>(ng/g)          | Plasma<br>(ng/mL) | %                | IC50 (μM) |
| OPM-383 | 5                                 | 42                                    | 33               | 56                                                               | 69     | 73   | 5302                     | 43441             | 5.2              | 6.9       |

Overview of OPM-383 inhibitor properties in a panel of biochemical and functional cell-based assays

|         | Mic               | Cyp inhibition at |           |         |     |     |        |       |
|---------|-------------------|-------------------|-----------|---------|-----|-----|--------|-------|
|         | Clint (uL/min/mg) |                   | Half Life | e (min) | 1A2 | 2D6 | 3A4BFC | 3A4BC |
|         | Human             | Mouse             | Human     | Mouse   |     |     |        |       |
| OPM-383 | 66                | 38.5              | 21        | 36      | 24  | 0   | 52*    | 32    |

OPM-383 showed no significant inhibition of CYPs 1A2, 2D6, 3A4BQ, 2C19, and 2C9. Only moderate inhibitory activity was observed on CYP3A4BFC

|         | Tissue Pro | Plasma Pro<br>(Reco |       |            |       |
|---------|------------|---------------------|-------|------------|-------|
|         | Rat        | Mouse               | Human | Rat        | Mou   |
| OPM-383 | 99.41 (80) | 99.35 (61)          | /     | 99.94 (73) | 99.30 |

**OPM-383 displayed high protein binding** 



kidney tissues

This study presents the identification of a novel LRRK2 inhibitor, OPM-383, demonstrating its potency, selectivity, and antitumor efficacy in a colon carcinoma model and in a panel of tumor-patient-derived organoids. As the lead compound of this series, OPM-383 displays good permeability, metabolic stability and capability to cross the blood-brain barrier with favorable drug-like properties. These findings highlight OPM-383 as a promising lead scaffold, laying the foundation for the design and synthesis of a novel class of kinase inhibitors. With its potential applications in cancer therapy, OPM-383 emerges as an attractive candidate, paving the way for innovative advancements in the field.

## Results



### **OPM-383 significantly inhibits tumor growth in mice bearing** colon carcinoma MC-38 tumors



One-way ANOVA test followed by Dunnett's multiple comparisons test (\* p<0.05; \*\* p<0.01 respect to control group)

### **OPM-383** inhibits the *in vitro* proliferation of cancer patient-derived organoids



# Conclusions



#3298

OPM-383 inhibited the proliferation of 7 out of 29 organoids (24%) after 6 days of exposure at various



oncodesign.com